Gradient descent

1. Apply gradient descent for finding the extrema of the function starting with the point $x=0$ and $y=0$:

$$
f(x, y)=3 x^{2}+5 y^{2}+4 x y+17 x-13 y+4
$$

Answer: Let $\mathbf{u}=\binom{x}{y}$ and let $\mathbf{u}_{0}=\binom{0}{0}$. The gradient of this function is:

$$
\vec{\nabla} f(\mathbf{u})=\binom{6 x+4 y+17}{4 x+10 y-13}
$$

The negation of the gradient at the initial point is therefore $-\vec{\nabla} f\left(\mathbf{u}_{0}\right)=\binom{-17}{13}$. Thus, if we plot $f\left(\mathbf{u}_{0}-\alpha_{0} \vec{\nabla} f\left(\mathbf{u}_{0}\right)\right)$, we have

Now, if you were to evaluate f at this linear combination of vectors, you would find that this defines a function

$$
828 \alpha_{0}^{2}-458 \alpha_{0}+4,
$$

which has a minimum at $\alpha_{0}=\frac{229}{828} \approx 0.2765700483091787$. Thus, our next approximation is

$$
\mathbf{u}_{1} \leftarrow \mathbf{u}_{0}-\alpha_{0} \vec{\nabla} f\left(\mathbf{u}_{0}\right)=\binom{0}{0}-0.2765700483091787\binom{17}{-13}=\binom{-4.701690821256039}{3.595410628019324}
$$

and $f\left(\mathbf{u}_{1}\right)=-59.33454106280195$.

The negation of the gradient at the next point is therefore $-\vec{\nabla} f\left(\mathbf{u}_{1}\right)=\binom{-3.17149758454107}{-4.14734299516908}$. Thus, if we plot $f\left(\mathbf{u}_{1}-\alpha_{1} \vec{\nabla} f\left(\mathbf{u}_{1}\right)\right)$, we have

Now, if you were to evaluate f at this linear combination of vectors, you would find that this defines a function

$$
168.7906135499080 \alpha_{1}^{2}-27.258850848327 \alpha_{1}-59.33454106280198,
$$

which has a minimum at $\alpha_{1} \approx 0.08074753173483786$. Thus, our next approximation is

$$
\begin{aligned}
\mathbf{u}_{2} \leftarrow \mathbf{u}_{1}-\alpha_{1} \vec{\nabla} f\left(\mathbf{u}_{1}\right) & =\binom{-4.701690821256039}{3.595410628019324}-0.08074753173483786\binom{3.17149758454107}{4.14734299516908} \\
& =\binom{-4.957781423110731}{3.260522917901651}
\end{aligned}
$$

and $f\left(\mathbf{u}_{2}\right)=-60.43508352476719$.

Finally, the negation of the gradient at the second point is therefore $-\vec{\nabla} f\left(\mathbf{u}_{2}\right)=\binom{-0.29540313294221}{0.22589651342641}$. Thus, if we plot $f\left(\mathbf{u}_{2}-\alpha_{2} \vec{\nabla} f\left(\mathbf{u}_{2}\right)\right)$, we have

Now, if you were to evaluate f at this linear combination of vectors, you would find that this defines a function

$$
0.2500130555997261 \alpha_{2}{ }^{2}-0.138292245730284 \alpha_{2}-60.43508352476720
$$

Iwhich has a minimum at $\alpha_{2} \approx 0.2765700483091802$. Thus, our third approximation is

$$
\begin{aligned}
\mathbf{u}_{3} \leftarrow \mathbf{u}_{2}-\alpha_{2} \vec{\nabla} f\left(\mathbf{u}_{2}\right) & =\binom{-4.957781423110731}{3.260522917901651}-0.2765700483091802\binom{0.29540313294221}{-0.22589651342641} \\
& =\binom{-5.039481081859241}{3.322999127532869}
\end{aligned}
$$

and $f\left(\mathbf{u}_{3}\right)=-60.45420727130844$.
2. Are consecutive gradients perpendicular to each other?

Answer: It appears yes, for if you take the inner product between them, that value is very close to zero.
3. You may have noticed that $\alpha_{0}=\alpha_{2}$. Is this to be expected; that is, do you expect $\alpha_{k}=\alpha_{k+2}$ in general?

Answer: No, this is happening here simply because the function being minimize is a quadratic. As there are more direct methods for finding the minimum of a quadratic, this isn't even really that useful an observation.
4. Apply gradient descent of the function starting with the point $x=1, y=1$ and $z=1$:

$$
f(x, y, z)=4 \cos (0.3 x y)+3 \cos (0.2 y z)+3 \cos (0.1 x z)
$$

Answer: Let $\mathbf{u}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and let $\mathbf{u}_{0}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. The gradient of this function is

$$
\vec{\nabla} f(\mathbf{u})=\left(\begin{array}{l}
-1.2 y \sin (0.3 x y)-0.3 z \sin (0.1 x z) \\
-0.6 z \sin (0.2 x z)-1.2 x \sin (0.3 x y) \\
-0.3 x \sin (0.1 x z)-0.6 y \sin (0.2 x z)
\end{array}\right) .
$$

The negation of the gradient at the initial point is therefore $-\vec{\nabla} f\left(\mathbf{u}_{0}\right)=\left(\begin{array}{l}0.3845742729876559 \\ 0.4738258464706442 \\ 0.1491516234710851\end{array}\right)$. Thus,
if we plot $f\left(\mathbf{u}_{0}-\alpha_{0} \vec{\nabla} f\left(\mathbf{u}_{0}\right)\right)$, we have

Using one-dimensional numerical optimization methods, we may determine that this has a minimum at $\alpha_{0} \approx 5.579412899276763$. Thus, our next approximation is

$$
\begin{aligned}
\mathbf{u}_{1} \leftarrow \mathbf{u}_{0}-\alpha_{0} \vec{\nabla} f\left(\mathbf{u}_{0}\right) & =\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-5.579412899276763\left(\begin{array}{l}
-0.3845742729876559 \\
-0.4738258464706442 \\
-0.1491516234710851
\end{array}\right) \\
& =\left(\begin{array}{l}
3.145698659437311 \\
3.643670039809043 \\
1.832178491942643
\end{array}\right)
\end{aligned}
$$

and $f\left(\mathbf{u}_{1}\right)=-0.609176731786268$.

The negation of the gradient at the next point is therefore $-\vec{\nabla} f\left(u_{0}\right)=\left(\begin{array}{c}-0.9799444827745933 \\ -0.035690900336148 \\ 2.640083285253116\end{array}\right)$. Thus,
if we plot $f\left(\mathbf{u}_{1}-\alpha_{1} \vec{\nabla} f\left(\mathbf{u}_{1}\right)\right)$, we have

Using one-dimensional numerical optimization methods, we may determine that this has a minimum at $\alpha_{1} \approx 0.7866853844524082$. Thus, our next approximation is

$$
\begin{aligned}
u_{2} \leftarrow u_{1}-\alpha_{1} \vec{\nabla} f\left(u_{1}\right) & =\left(\begin{array}{l}
3.145698659437311 \\
3.643670039809043 \\
1.832178491942643
\end{array}\right)-0.7866853844524082\left(\begin{array}{c}
0.9799444827745933 \\
0.035690900336148 \\
-2.640083285253116
\end{array}\right) \\
& =\left(\begin{array}{l}
2.374790657263764 \\
3.615592530156648 \\
3.909093426188367
\end{array}\right)
\end{aligned}
$$

and $f\left(\mathbf{u}_{2}\right)=-4.431836171000048$.

Finally, the negation of the gradient at the second point is therefore $-\vec{\nabla} f\left(\mathbf{u}_{2}\right)=\binom{-0.29540313294221}{0.22589651342641}$. Thus, if we plot $f\left(\mathbf{u}_{2}-\alpha_{2} \vec{\nabla} f\left(\mathbf{u}_{2}\right)\right)$, we have

Using one-dimensional numerical optimization methods, we may determine that this has a minimum at $\alpha_{2} \approx 0.1367658073293575$. Thus, our third approximation is

$$
\begin{aligned}
u_{3} \leftarrow u_{2}-\alpha_{2} \vec{\nabla} f\left(u_{2}\right) & =\left(\begin{array}{l}
2.374790657263764 \\
3.615592530156648 \\
3.909093426188367
\end{array}\right)-0.1367658073293575\left(\begin{array}{l}
-3.264524355445020 \\
-2.253846402564102 \\
-1.242193553759089
\end{array}\right) \\
& =\left(\begin{array}{l}
2.821265966282553 \\
3.923841652999696 \\
4.078983030427552
\end{array}\right)
\end{aligned}
$$

and $f\left(\mathbf{u}_{3}\right)=-5.707153277803242$.
5. This method appears to be converging much more slowly. Any ideas why?

Answer: This is a very highly non-linear function with many local peaks and troughs. Consequently, there is no real direct route from what is close to a local maximum (recall that $f\left(\mathbf{u}_{0}\right)=9.746558185860226$, to a minimum. If, however, we were to start at a reasonable approximation of a minimum, we may be able to converge to a better approximation.
6. Instead of starting with the vector we did in Question 4, start with the vector $\mathbf{u}_{0}=\left(\begin{array}{l}4.75 \\ 2.25 \\ 6.75\end{array}\right)$. What is the sequence of approximations?

Answer: If we let $\mathbf{u}_{0}=\left(\begin{array}{l}4.75 \\ 2.25 \\ 6.75\end{array}\right)$ where $f\left(\mathbf{u}_{0}\right)=-9.969134842562037$, our sequence of iterations now proceed as follows:

1. $\quad \mathbf{u}_{1}=\left(\begin{array}{l}4.597650581296476 \\ 2.276210979603908 \\ 6.774052543229699\end{array}\right)$ where $f\left(\mathbf{u}_{1}\right)=-9.993886012682701$
2. $\quad \mathbf{u}_{2}=\left(\begin{array}{l}4.602120207739099 \\ 2.294328198638612 \\ 6.782620241447279\end{array}\right)$ where $f\left(\mathbf{u}_{2}\right)=-9.996748987558708$
3. $\mathbf{u}_{3}=\left(\begin{array}{l}4.586999613729395 \\ 2.282185635918663 \\ 6.816185017884426\end{array}\right)$ where $f\left(\mathbf{u}_{3}\right)=-9.998270666217952$
