
Gradient descent 
1. Apply gradient descent for finding the extrema of the function starting with the point x = 0 and y = 0:  

f (x, y) = 3x2 + 5y2 + 4xy + 17x – 13y + 4 
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The negation of the gradient at the initial point is therefore ( )0
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Now, if you were to evaluate f at this linear combination of vectors, you would find that this defines a 

function 
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and f (u1) = –59.33454106280195. 

  



The negation of the gradient at the next point is therefore ( )1
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Now, if you were to evaluate f at this linear combination of vectors, you would find that this defines a 

function 
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which has a minimum at  1 0.08074753173483786  . Thus, our next approximation is 
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and f (u2) = –60.43508352476719. 

  



Finally, the negation of the gradient at the second point is therefore ( )2
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. Thus, if we plot ( )( )2 2 2f f− u u , we have 

 

Now, if you were to evaluate f at this linear combination of vectors, you would find that this defines a 

function 

0.2500130555997261
2 – 0.138292245730284 – 60.43508352476720 

\which has a minimum at  2 0.2765700483091802  . Thus, our third approximation is 
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and f (u3) = –60.45420727130844. 

2. Are consecutive gradients perpendicular to each other? 

Answer: It appears yes, for if you take the inner product between them, that value is very close to zero. 

3. You may have noticed that 0 =  2. Is this to be expected; that is, do you expect k = k+2 in general? 

Answer: No, this is happening here simply because the function being minimize is a quadratic. As there are 

more direct methods for finding the minimum of a quadratic, this isn’t even really that useful an observation. 

 

  



4. Apply gradient descent of the function starting with the point x = 1, y = 1 and z = 1: 

f (x, y, z) = 4 cos(0.3xy) + 3 cos(0.2yz) + 3 cos(0.1xz) 

Answer: Let 
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The negation of the gradient at the initial point is therefore ( )0
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Using one-dimensional numerical optimization methods, we may determine that this has a minimum at  

0 5.579412899276763  . Thus, our next approximation is 
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and f (u1) = –0.609176731786268. 



The negation of the gradient at the next point is therefore ( )0
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Using one-dimensional numerical optimization methods, we may determine that this has a minimum at 

1 0.7866853844524082  . Thus, our next approximation is 

( )2 1 1 1

3.145698659437311 0.9799444827745933

3.643670039809043 0.7866853844524082 0.035690900336148

1.832178491942643 2.640083285253116

2.374790657263764

3.615592530156648

3.909093

u u f u

   
   

 −  = −   
   −   

=

426188367

 
 
 
 
 

 

and f (u2) = –4.431836171000048. 

  



Finally, the negation of the gradient at the second point is therefore ( )2
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Using one-dimensional numerical optimization methods, we may determine that this has a minimum at 

2 0.1367658073293575  . Thus, our third approximation is 
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and f (u3) = –5.707153277803242. 

5. This method appears to be converging much more slowly. Any ideas why? 

Answer: This is a very highly non-linear function with many local peaks and troughs. Consequently, there 

is no real direct route from what is close to a local maximum (recall that f (u0) = 9.746558185860226, to a 

minimum. If, however, we were to start at a reasonable approximation of a minimum, we may be able to 

converge to a better approximation. 

  



6. Instead of starting with the vector we did in Question 4, start with the vector 0
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